forked from Simnation/Main
103 lines
3.2 KiB
JavaScript
103 lines
3.2 KiB
JavaScript
![]() |
|
||
|
async function getBase64Image(src, removeImageBackGround, callback, outputFormat) {
|
||
|
const img = new Image();
|
||
|
img.crossOrigin = 'Anonymous';
|
||
|
img.addEventListener("load", () => loadFunc(), false);
|
||
|
async function loadFunc() {
|
||
|
const canvas = document.createElement('canvas');
|
||
|
const ctx = canvas.getContext('2d');
|
||
|
var convertingCanvas = canvas;
|
||
|
if (removeImageBackGround) {
|
||
|
var selectedSize = 320
|
||
|
canvas.height = selectedSize;
|
||
|
canvas.width = selectedSize;
|
||
|
ctx.drawImage(img, 0, 0, selectedSize, selectedSize);
|
||
|
await removeBackGround(canvas);
|
||
|
const canvas2 = document.createElement('canvas');
|
||
|
const ctx2 = canvas2.getContext('2d');
|
||
|
canvas2.height = 64;
|
||
|
canvas2.width = 64;
|
||
|
ctx2.drawImage(canvas, 0, 0, selectedSize, selectedSize, 0, 0, img.naturalHeight, img.naturalHeight);
|
||
|
convertingCanvas = canvas2;
|
||
|
} else {
|
||
|
canvas.height = img.naturalHeight;
|
||
|
canvas.width = img.naturalWidth;
|
||
|
ctx.drawImage(img, 0, 0);
|
||
|
}
|
||
|
var dataURL = convertingCanvas.toDataURL(outputFormat);
|
||
|
canvas.remove();
|
||
|
convertingCanvas.remove();
|
||
|
img.remove();
|
||
|
callback(dataURL);
|
||
|
};
|
||
|
|
||
|
img.src = src;
|
||
|
if (img.complete || img.complete === undefined) {
|
||
|
img.src = "";
|
||
|
img.src = src;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
async function Convert(pMugShotTxd, removeImageBackGround, id) {
|
||
|
var tempUrl = `https://nui-img/${pMugShotTxd}/${pMugShotTxd}?t=${String(Math.round(new Date().getTime() / 1000))}`;
|
||
|
if (pMugShotTxd == 'none') {
|
||
|
tempUrl = './img/failSafe.png';
|
||
|
}
|
||
|
getBase64Image(tempUrl, removeImageBackGround, function(dataUrl) {
|
||
|
$.post(`https://${GetParentResourceName()}/Answer`, JSON.stringify({
|
||
|
Answer: dataUrl,
|
||
|
Id: id,
|
||
|
}));
|
||
|
})
|
||
|
}
|
||
|
|
||
|
// https://www.youtube.com/watch?v=GV6LSAYzEgc
|
||
|
async function removeBackGround(sentCanvas) {
|
||
|
const canvas = sentCanvas;
|
||
|
const ctx = canvas.getContext('2d');
|
||
|
|
||
|
// Loading the model
|
||
|
const net = await bodyPix.load({
|
||
|
architecture: 'MobileNetV1',
|
||
|
outputStride: 16,
|
||
|
multiplier: 0.75,
|
||
|
quantBytes: 2,
|
||
|
modelUrl: "./js/models/model-stride16.json"
|
||
|
});
|
||
|
|
||
|
// Segmentation
|
||
|
const { data:map } = await net.segmentPerson(canvas, {
|
||
|
internalResolution: 'medium',
|
||
|
});
|
||
|
|
||
|
// Extracting image data
|
||
|
const { data:imgData } = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||
|
|
||
|
// Creating new image data
|
||
|
const newImg = ctx.createImageData(canvas.width, canvas.height);
|
||
|
const newImgData = newImg.data;
|
||
|
|
||
|
for (var i=0; i<map.length; i++) {
|
||
|
//The data array stores four values for each pixel
|
||
|
const [r, g, b, a] = [imgData[i*4], imgData[i*4+1], imgData[i*4+2], imgData[i*4+3]];
|
||
|
[
|
||
|
newImgData[i*4],
|
||
|
newImgData[i*4+1],
|
||
|
newImgData[i*4+2],
|
||
|
newImgData[i*4+3]
|
||
|
] = !map[i] ? [255, 255, 255, 0] : [r, g, b, a];
|
||
|
}
|
||
|
|
||
|
// Draw the new image back to canvas
|
||
|
ctx.putImageData(newImg, 0, 0);
|
||
|
}
|
||
|
|
||
|
window.addEventListener("message", (e) => GotMessage(e), false);
|
||
|
async function GotMessage(e) {
|
||
|
var msg = e.data
|
||
|
if (msg.type == 'convert') {
|
||
|
Convert(msg.pMugShotTxd, msg.removeImageBackGround, msg.id);
|
||
|
}
|
||
|
}
|
||
|
|